skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yuxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The paper describes a heterobimetallic mixed-ligand hexanuclear precursor [NaMn2(thd)4(OAc)]2 (1) (thd = 2,2,6,6-tetramethyl-3,5-heptadionate; OAc = acetate) that was designed based on its lithium homoleptic analogue, [LiMn2(thd)5], by replacing one of the thd ligands with an acetate group in order to accommodate 5-coordinated sodium instead of tetrahedral lithium ion. The complex, which is highly volatile and soluble in a variety of common solvents, has been synthesized by both the solid-state and solution methods. The unique “dimer-of-trimers” heterometallic structure consists of two trinuclear [NaMnII2(thd)4]+ units firmly bridged by two acetate ligands. X-ray diffraction techniques, DART mass spectrometry, ICP-OES analysis, and IR spectroscopy have been employed to confirm the structure and composition of the hexanuclear complex. Similar to the Li counterpart forming LiMn2O4 spinel material upon thermal decomposition, the title Na:Mn = 1:2 compound was utilized as the first single-source precursor for the low-temperature preparation of Na4Mn9O18 tunnel oxide. Importantly, four Mn sites in the hexanuclear molecule can be potentially partially substituted by other transition metals, leading to heterotri- and tetrametallic precursors for the advanced quaternary and quinary Na-ion oxide cathode materials.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    We report on the enhancement of electrical properties of unsubstituted polythiophene (PT) through oxidative chemical vapor deposition (oCVD) and mild plasma treatment. The work function of p-type oCVD PT increases after the treatment, indicating the Fermi level shift toward the valence band edge and an increase in carrier density. In addition, regardless of initial values, nearly the same work function is obtained for all the plasma-treated oCVD PT films as high as ∼5.25 eV, suggesting the pseudo-equilibrium state is reached in the oCVD PT from the plasma treatment. This increase in carrier density after plasma treatment is attributed to the activation of initially not-activated dopant species (i.e. neutrally charged Br), which is analogous to the release of trapped charge carriers to the valence band of the oCVD PT. The enhancement of electrical properties of oCVD PT is directly related to the improvement of the thin film transistor performance such as drain current on/off ratio, ∼103and field effect mobility, 2.25 × 10−2cm2Vs−1, compared to untreated counterparts of 102and 0.09 × 10−2cm Vs−1, respectively.

     
    more » « less
  3. Electronic and optoelectronic devices often require multifunctional properties combined with conductivity that are not achieved from a single species of molecules. The capability to tune chain length, shape, and physicochemical characteristics of conductive copolymers provides substantial benefits for a wide range of scientific areas that require unique and engineered optical, electrical, or optoelectronic properties. Although efforts have been made to develop synthetic routes to realize such promising copolymers, an understanding of the process–structure–property relationship of the synthesis methods needs to be further enhanced. In addition, since traditional methods are often limited to achieving pinhole-free, large-area coverage, and conformal coating of copolymer films with thickness controllability, unconventional synthetic strategies to address these issues need to be established. This Perspective article intends to enhance knowledge on the process–structure–property relationship of functional copolymers by providing the definition of copolymers, polymerization mechanisms, and a comparison of traditional and emerging synthetic methods with reaction parameters and tuned physical properties. In parallel, practical applications featuring the desired copolymers in electronic, optical, and sensing devices are showcased. Last, a pathway toward further advancement of unique copolymers for next-generation device applications is discussed. 
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  4. Free, publicly-accessible full text available October 1, 2024
  5. An unusual heterobimetallic volatile compound [Pb2Co5(acac)14] was synthesized by the gas phase/solid-state technique. The preparation can be readily scaled up using the solution approach. X-ray powder diffraction, ICP-OES analysis, and DART mass spectrometry were engaged to confirm the composition and purity of heterobimetallic complex. The composition is unique among the large family of lead(tin): transition metal = 2:1, 1:1, and 1:2 β-diketonates compounds that are mostly represented by coordination polymers. The molecular structure of the complex was elucidated by synchrotron single crystal X-ray diffraction to reveal the unique heptanuclear moiety {Co(acac)2[Pb(acac)2-Co(acac)2-Co(acac)2]2} built upon bridging interactions of acetylacetonate oxygens to neighboring metal centers that bring their coordination numbers to six. The appearance of unique heptanuclear assembly can be attributed to the fact that the [Co(acac)2] units feature both cis- and trans-bis-bridging modes, making the polynuclear moiety rather flexible. This type of octahedral coordination is relatively unique among known lead(tin)-3d transition metal β-diketonates. Due to the high-volatility, [Pb2Co5(acac)14] can be potentially applied as a MOCVD precursor for the low-temperature preparation of lead-containing functional materials.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. Free, publicly-accessible full text available October 1, 2024
  8. Free, publicly-accessible full text available July 1, 2024